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SUMMARY

The inviscid hydrodynamic stability of a swirling coaxial jet to
axisymmetric disturbances is investigated when the flow is incompressible
but density stratified. In the first part of the paper, the axial and
swirl velocity components and the density profiles are all allowed to be
arbitrary functions of radius. Howard and Gupta's [1] stability results
are then extended to this case with the results:

(1) If ¢ = 4%—é%[rzpo(r)v2(r)] with V the azimuthal velocity,
r 2
then a sufficient condition for stability is ¢ > %-po %g)

(ii) If the flow is unstable, then the growth rate of any unstable
mode of wavenumber k cannot exceed Tk (W
2 max

W and W . are the greatest and least axial velocities
max min

occurring in the flow.

- W . ) where
min

In the second part, flow with a cylindrical vortex sheet is examined.
The discontinuity sheet introduces an instability which cannot be stabilized
by rotation as in the continuous case. Nevertheless, the presence of rota-
tion reduces the growth rates of disturbances. The case of rapid rotation
outside, and no rotation inside, is particularly simple to treat. For
this case it is found that growth rates of waves of a given wavenumber are

p
proportional to e— if there is a Jump in swirl velocity as well as axial

p
e 1/2 |pe)3/h

velocity at the vortex sheet, and to € (pi if the swirl 1s con-

tinuous (i.e., if it vanishes) at the interface. Here e = é§~(where W is

the jump in axial velocity, a is the radius of the vortex sheet, and @ is
a typical angular velocity) is assumed to be small. The quantity pi|pe

is the ratio of density of fluid inside to that outside the vortex sheet.

INTRODUCTION

Prof. F. K. Moore has suggested that the nuclear fuel of a gas core
nuclear rocket might be contained by a recirculating flow embedded in a
propellant stream. The propellant would completely surround the nuclear
core and no solid walls would be required. The sides of the rocket would
therefore be cooled by the propellant, which would in the process absorb
the energy required to generate thrust. A schematic of the situation
appears in Figure 1.
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Figure 1

Recirculating eddies, almost completely self contained, have in
fact been observed to form spontaneously in aerodynamic contexts,
particularly in the vortical core of the rolled up vortex sheets above
delta wings at an angle of attack. They have also been observed to
occur in tubes, when the fluid introduced in the tube has a swirling
component (cf. M. G. Hall's review article [2] for a summary and bibliog-
raphy). The phenomenon has been called "vortex breakdown' or "vortex
bursting' by aerodynamicists.

If the region inside the closed stream surface can be replaced by
a second gas, then this phenomenon could be used as a containment
mechanism.

Possible shapes and flow patterns for vortex bursts have been
calculated by the author [3] under the following assumptions:

(a) the motion is steady,
(b) the fluids are incompressible and inviscid,
(c) the shapes of the bursts are loung and slender,

(d) the motion of the fluid outside, if undisturbed by the presence
of the burst, would be in solid body rotation superposed upon
a uniform axial flow.

A sketeh of the flow pattern found (for which we have coined the
term "slender eddies") is shown in Figure 2. The surface of the eddy is
a vortex sheet with the fluid inside moving more slowly than that out-
side. There is no velocity in the azimuthal direction inside the eddy.
Qutside the eddy the swirl component of velocity is zero on the eddy sur-
face, and increases as the radial distance from the eddy increases,
approaching solid body rotation at large distances.



There is no need for the gases inside and outside the eddy to be
the same. 1In particular, a heavy gas could be caught in the eddy, and

a light gas be blown past it. Figure 2 shows a sketch of the flow pattern
uncovered.

V(r)
e / Pl V(I‘)

ol

_ o
~/ JiZaNy,

L/

Figure 2

In this report, the stability of a simplified model of this flow
pattern to axisymmetric disturbances is examined. No results are given
for perturbations which are not axisymmetric.

The model chosen has a basic (unperturbed) motion which is cylindri-

cal. Referring to Figure 3, which is a sketch of the model to be con-
sidered,

> Vv(r)

(b PRy
/

Figure 3
the model assumes motion confined to a tube of finite radius, with a base
flow pattern of

w = W(r) , v = V(r) , u=20, p = p(r) , p = po(r).

Here p is pressure and p is density.



This model is at once more general and more particular than the
slender eddy. The assumed velocity profiles may be arbitrary functions
of r, but all base quantities are independent of the axial coordinate.

It is not unreasonable to expect this cylindrical model to serve as a
representation of the midsection of a slender eddy. Furthermore, this
model can be used as an approximation of the coaxial jet gas core reactor
scheme. '

Stability results of a general nature are obtained for this strati-
fied, swirling flow in sections 2 and 3 of Part I. The results are
generalizations of two stability criteria discovered by Howard and
Gupta [1] for the same problem but without density stratification. The
present results may be summarized as follows.

(i) The flow is stable if

2
7 L {po(r)r%g(r)} > o) 52

For a flow with W = 0, this is just the Rayleigh stability criterion.

(ii) 1If condition (i) is violated, and if the resulting flow proves
to be unstable, then the growth rate is connected to the
propagation speed of the mode by a "semicircle theorem'. This
states that the complex wave speed c = c. + ici of the unstable

mode must lie in a semicircle in the upper half complex c-
plane with center at (cr, ci) = l{w + W ), 0] and with

2 min max

radius l{w -W., ). W and W ., are the maximum and
2 max min max min

minimum values of axial speed which occur. Thus the maximum
possible growth rate of an unstable mode of length 1/k is

1 . 1
Ek(wmax - wﬁin) and it would propagate at a speed 2(wmax
W. ), (if it occurs at all),

min

Part II deals with the situation in which the density and velocity
profiles are discontinuous. When a vortex sheet occurs, as in the slender
eddy solution, the criteria of Part I, which require differentiable
velocity and density profiles, cannot be applied. We therefore specialize
our model even further. In doing so, we try to reproduce as closely as
possible the salient features of the slender eddy. In the interior of
the slender eddy, flow speeds are very low compared to the external flow.
The model used in this part therefore is a cylindrical vortex sheet with
zero (or constant, it does not matter) axial speed inside, and a different
axial speed outside. There is no swirl component in the interior, and
an arbitrary swirl component outside. The density ratio is arbitrary,
and the heavy fluid may be either inside or outside the discontinuity
sheet. The situation is sketched in Figure k4.
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Two sources of instability are present here. Because of the dis-
continuity of axial velocity, a Kelvin-Helmholtz instability mechanism
is present. The second possibility is a Reyleigh instability [5], if
V2(r) does not increase with radius. There is no possibility for stable
flows if the Rayleigh criterion is violated (we show this in Part II),
so we assume that V2(r) increases with r. Tt does so in the slender eddy
flow. If this is the case, then rotation is a stabilizing influence and
competes with the Kelvin-Helmholtz mechanism.

Our results for Part II may be summarized as follows:
(i) Although rotation has a stabilizing effect, a Kelvin-Helmholtz
instability orevails, so that the flow (which has a jump with-

out structure) is unstable,

{(ii) 'The growth rates decrease as the rotation rate increases,
being proportional to

L f}4k(w)2 %an(ﬁil
i o, 9a Il(ka)

if the swirl at the vortex sheet (located at r = a) is not
zero, and being proportional to

W e xal (kxa) 3/4
we oL ©
Qa ’:pe Ilh;a)

when the swirl vanishes at r = a.

Here pj and p, are, respectively interior,and exterior
densities, 2 is a typical angular velocity in the outer flow,
and I, and I} are modified Bessel functions. The results hold
for Q large }this is made more precise later).



The relationship between results of Parts I and II is discussed in
the conclusion.

. PART I

EQUATIONS AND GENERAL RESULTS FOR INVISCID STABILITY
TO AXISYMMETRIC DISTURBANCES

Basic Flow and Small Disturbance Equations

The basic flow field is taken to be,

p = P(r)

p = po(r)

r =r(r)
u, = W(r)
u =0

r

where T = ru, is the circulation, p(r) density, and p pressure. Some

general features of its stability to axisymmetric disturbances will now

be derived. The results obtained serve to generalize the work of Howard
and Gupta [1] (1962) to which the results of this section reduce if the

fluid is homogeneous (pO = constant ).

The equations of motion governing an axisymmetric flow of an inviscid
and incompressible (but density stratified) flow are

_ aur 3ur aur 2 ap

—— —_— ¢ —_— e = - -
P53y * 4 3t Y TH, - ] ar
aru aru
—-E s __Z=-9

or 9z

(1)
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We assume that the basic flow is subjected to a small perturbation,

so that

©
i}

I' =

Thus, the perturbations
set of equations

+ Wp +
P Qz

t

(ru)r + (rw)Z =0, D=

Letting Q = g(r) exp [i(kz -
gg( } by - iw( ) and gé;)-by

components are then

Qo(r) + p(rszat)
W(ir) + w(r,z,t)
(2)

u(r,z,t)

P(r) + n(r,z,t)
r(r) + y(r,z,t)

Q = (u,w,y,p,m) are governed by the linear

ar 1., .01
3 Po T Pg .3
e b
DO

upl = 0 (3)
qu0 =0

4

dar

wt )]

ik( ). The equations for the Fourier

a(r) exp [ik(z~ct)] we may replace
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2
(a) ik(W-c)u - 'g'y = - A pr =L 30

r pO pTr

O
(b) ik(Wec)w + uDW = - == ikm
pO
(c) ik(W-c) vy + uDl' = 0 (L)
(a) ik (W-c)p +ubp_ = 0
, 1
(e) ikw = - ;—D(ru) = - D,u
where D () =22 [x( ).

How ¢ = ¢_ + ici and we assume that c¢ is not real (if it is, the
motion is stable). Then we may let

u = ik (W-c)F(r)

Then from the continuity equation (Le)

W= - D[ (W-c)F(r)]
while, from (4c,d),
Yy = —FDT
p = —FDpo

Eliminating m between (4a) and (4b), we find that

Dlp (W-c)?D,F] - k% (W-c)7F = - o(r)F (5)
where

o(r) = j%—D(pofz) . (6)

In the case W = 0, we can see from (5) that ¢ > 0 is a sufficient
condition for stability, and this condition is Reyleigh's criterion.



Semi-Circle Theorem

We now follow Howard and Gupta. Multiply (5) by rF#*, where the star
superscript stands for complex conjugation, and integrate from r = 0 to
r = R. Remembering that the boundary conditions require that

0, so F(0)

u(0) 0

u(R) =0, so F(R) =0

we find that
prO(W—c)2[|D*F|2 + X2|F|Plrar = [Fro(r)|F]? ar .
o] o

Separate this equation into its real and imaginary parts, let

s = o _r[|D,F|% + °|F|?]

and assume that c; # 0. The imaginary part is

R
c, i (W—cr)Sdr =0

or

fR WS dr = c. fR S dr
0 o

The real part yields
IR[(W—C ) - ¢ 2] S dr = er¢|F|2 ar
o) r i - S

Consider a statically stable configuration,

then
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If a and b are any two real numbers, the above equation implies that

R : R
[ (¥-a)(w-b)sar > {[c_ - %(a+b)]2 + ci2 - %(a—b)?} £'Sdr )
But if

as<Wghd

then the left hand side is less than or equal to zero, in which case

le, - %-(a+b)]2 + ci2 < -11;(‘3-1))2

Since & positive ¢, implies instability, all unstable modes lie in the
semi-circle in the upper half complex c-plane with center at (cr, Ci) =

2

the semi-circle either is stable, with c; = 0, or not a possible solution

to the equation of motion.

Howard and Gupta's Semicircle theorem therefore carries over to the

stratified case without change.

Sufficient Conditions for Stability

In this section we show that the general stability criterion found
by Howard and Gupta for the case of a homogeneous fluid also holds if the

fluid is stratified, provided the criterion is suitably modified.

We return to equation (5) and write

M=W-e¢,
and
r =M /?,
We note that
D.F = DF + & = m™H2p ¢ - Lu3/2(pu)g
* r * 2

(l(a+b), 0) and of radius %{b—a). A disturbance with a wave speed not in



1/2)

then, in terms of G equation (5) is (upon division by M

2 1 DM 2 c 1 2
1,61 - MG + =G = - ¥ = - -\ '
D[pOMI* ] -k G 5 {po - pOD M DHDpO} M[¢ ) po(DM) ]

' *
Multiplying this equation by rG and integrating from O to R, we
get '

R 2 2112 1 R oM 2
- i o MLIDLGI" + k7|6 " Jrar + 5 g ro |G|7[°2" - DM ~ DMPp_ldr

_ fR J%%f.r[¢ - %po(DW)?]dr
o]

Collecting the imaginary parts of the complex equation, we get
R 2 2 2 IG 2 1 2
c ([T o_U10,6]7 + k[6]|%] + == Jo — o (W) ]}rdr} = 0
1 o o] We e [e)

Therefore, either c, = 0 (stable) or else

2 |e
R 2 -
i po[ll)*(}]2 + kqulz]rdr = JR rlcl [j?(w')? _ q ar

which is a modified form of the Howard-Gupta result.

Since the left hand side must be positive, this equation cannot
met when

b > -[l‘-‘oo(W')2

which is therefore a sufficient condition for stability of the flow.

be

11



PART IIX

THE CYLINDRICAL VORTEX SHEET

When the density, shear and swirl distributions have very sharp
gradients at some cylindrical surface, the stability criterion of Part I
becomes difficult to apply. In particular, these distributions can, on
the inviscid scale, appear to be discontinuous. Although the continuously
stratified criterion may be piecewise satisfied, the discontinuity inter-
face may be unstable.

This situation, where the instability arises purely from the presence
of a discontinuity sheet, is familiar. For example, even though the
inflection point criteria may be piecewise satisfied in plane parallel
flow, a vortex sheet is unstable.

In this section, we examine this possibility. To do so, we must
actually solve for the perturbed motion. Since this is intractable for
arbitrary profiles, we must abandon the general viewpoint taken in Part 1
and consider a special, and simple, basic motion.

The model we choose is a cylindrical vortex sheet, closely resembling
the middle section of a long, slender eddy found previously by the author.
Sketch 4 illustrates the geometry considered.

The discontinuity surface r = a divides the inner (i) region r < a
from the outer (e) region r.> a. The base flow in each region is taken
to be as follows:

r < a p = pi = constant
W= Wi = constant
v=V, =0
i
and r > a; p = pe = constant
W= we = constant
V=V (r)
e
and without loss of generality, we may take W = 0. Thus in what follows,

we drop the subscript of i on Wi and assume if to be the only non-zero
axial velocity.

This particular flow features a general external swirl velocity,
but no swirl inside in accordance with the slender eddy solution. As in
that work, the density is taken as piecewise constant. For simplicity,
however, the shear associated with the slender eddy is suppressed and

12



the axial velocity is taken to be piecewise constant. It is thought that
this model will provide useful qualitative information about the stability
of the slender eddy.

Although we are principally interested in the gas core application,
with o >> pe’ we can carry out the analysis for pi/pe arbitrary.

Eigenvalue Problem

Equation (5) holds in each region. Therefore,

2, _
DD,F, - k°F, = 0 (1a)

and

2p o _ telr)
DDyF_ - K°F_ = ~ 2 F, (7v)
e

c
If the deviation of the interface from r = a is §(z,t), so that
r -a= 6(z,t)

describes the radial position of the interface, then

ad
3p T4 vé = Yy
Ir
s = Celk(z—ct)

where 7 = constant, then

ik(We i—c)c =.ik(We i—c)Fe i(a.)

b 9 2

Thus the kinematical condition at the interface is

P (a) = Fy(a) .

13



Also, with We =0, W, =W,

c
1]

1k(W—c)Fi

u

- ikeF
e e

and, since ui(O) = 0, ue(R) = 0, we have

Fi(O) = Fe(R) =0 . (8)

Furthermore, the dynamical condition at the interface requires that
the pressure match there, or

m (a) = ﬂi(a)
Referring to (4b,e)

T = +p(W—c)2D*F

so that at r = a,
2 _ 2
p; (W=c)"(DyF.) = p c"(DyF ) . (9)

Equation (7) must now be solved subject to these boundary conditions,
where the object is to find the eigenvalues c¢. If ¢ is real, the flow is
stable, if complex, it is unstable.

The solution for Fi which satisfies the boundary condition on the
axis is

Fi = AIl(kr)

Since the equation for Fe is considerably more complicated, it is
worthwhile to pause to see whether anything of a general nature can be
deduced about the problem short of actually solving it in detail.

We can now show that the flow is always unstable to waves of large
enough wavenumber providing that there is an axial velocity difference,
i.e., W# 0. A byproduct of this is a demonstration that the flow is
stable for W= 0 if ¢ > 0 (Rayleigh criterion) and unstable if ¢ < O for



W= 0. If ¢ changes sign for W = 0, then this approach gives no informa-
tion as to stability.

To show this we begin by making the following change of variables:

G =rF
e
2
= X
n=7
a
2
b = =
a
9o(r) = ¢(n)
thus,
14 _2 4
r dr a2 n
and equation (Tb) becomes
a°c 1 x°a° a° ¢(n)
L = G = -~ +— G (10)
2 4 n kn 2
dn p_C
e
and G is subject to the boundary conditions:
G(1) = aA Il(ka)
0. 2
G y o & (W=c) _, ka
dn(1) =5 5 ah g Io(ka) (11)
e c
G(p) =0 .

Multiplying equation (10) by G* and integrating from n = 1 to n = b,
we have

2
* dG b 4G 2
-6 ()1 - { |a;| dn = == [7 =1 - -5 —1{e|%an .

1 k pec

15
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But from the boundary conditions (11),

) 2
* 4G,y _ Pi, .2 ka (W-c)®
G (1)———dn(1) =3 laA | Il(ka)Io(ka)2 5
e C
so that, on putting G = alg
2 2 2 0. 2 2
a 2 k W~
- e« & X 1gl%1an = = 221 (xa)1 (ka) W) _ &l [° £|e|%an
dn hn 270 1 2 n
1 e c hpec 1

With obvious notation, this equation may be written

where Q, R, 8, are all real numbers with Q > 0, and S » O.
Rearranging, we have
R
(@ + 8)e® - 2qWe - (5 - Q) = 0
e

If the discriminant of this equation
W+ (- )@+ 8) > 0
e

then c is real, and the flow stable, whereas if this is not so, the flow
is unstable. Rewriting this condition,

R(Q + 8) -pew28Q2. o .
Clearly, if R < 0, then the inequality is violated since Q@ > 0, 8 > O,
so the flow is unstable. Note that
2
a b 1 2
R=1Tf ~p|g|“an
l n

is negative if ¢ is negative. Thus we assume that ¢ > O to proceed.



With R > 0, the flow will be stable if either
R2p wzs
e
R 2 peWZQ

The Rayleigh criterion is recovered as a sufficient condition for
stability from either of these by putting W = 0.

From the first criterion,

l 2 b
f;~-¢—oW]lg|dn>oW fl—‘gld > 0
1
From the second criterion,

f ¢|gl dn > oiW2 %zo(ka)xl(ka)

Both of these are violated for ¢ fixed if k is large enough. Thus
the flow must be unstable at least to short waves (k large) and it is
possible that no wavelengths are stable.

Certainly it appears that the larger 2*- - is, the greater are the

chances for stability. This would lead one to hope that ¢ could be
raised high enough so that the instability would arise only at very high
axial wave numbers, where viscous damping enters as a stabilizing factor.
Also, it appears that, for any given ¢, low frequency waves would be more
likely to be stable.

Therefore, one is lead to examine what seems to be the most favorable
a2¢ '
5 w2 >> 1, to see if it is in fact stable.

situation for stability, i.e.,
This limiting condition will be made more precise in what follows.

We now non-dimensionalize ¢ by introducing a typical angular velocity
Q, and letting

T = aQQf(n)

1T
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so that

Q2
2 d 2 e .
¢ = —- ==pI° =4 = rr'(n) .
ahn dn n
¢a2
Large ;~ﬁg'thus will mean large values of the frequency ratio
e
ga _ 1
W o e

where € is a Rossby number based upon a.

In terms of a = %—%%3 the governing differential equation is

2 2., 2 2
a G + g_ a ff _ al%{ =0 (12)
dn : .

2 n n

We now obtain the first term of the asymptotic expansion of G for
large |a|*, by the WBKJ technique (Jeffreys [4], "Asymptotic Approxima-
tions").

Put G = A(n) exp aB(n), upon separation of powers of o, we find

e - _ ff' A _ _1B''
(B')" = 2 A 2 B! :
n
Therefore
B=zi [" e ) ?an
1 n
and
A (B,)—l/2 .
Let
1 1/2
Lre)H2 = y(n)
n
Wk

* Due to the semicircle theorem, > 1 for an unstable mode. Restrict-

w
ing attention to unstable modes, then a 2 %—and therefore is large if

€ is small. See the remarks to follow on pg. 20.



then the first approximation to G is

¢ = X—l/2 {C exp (ia fnxdn) + D exp (-ia fnxdn)} . (13)

1 1
There are two important special'cases to consider
(i) x is always non-zero
(ii) the slender eddy case where x(1) = 0, i.e., at the interface
the angular velocity is continuous, and therefore vanishes

there.

We consider each case in turn.

Case i

Since x does not vanish in the interval 1 < n < b, the expression
(13) for G is a uniformly valid approximation. Applying boundary condi-~
tions, we have

2

¢'(1) = . Qr_;c_z_)__é__ AT (ka) = - %{3/2(1)(0 + D) + ialc - D2 @)
a(1) = x 21y + p) = ahT, (ka)

_ 1/2
G(b) = (v){C exp (ia f xdn) + D exp (-ia f xdn)} =

1 1

This leads to the following eigenvalue problem {after some manipuiation)

0.
z (e )’ kal (ka) + (X911 (ka) - dax(1) fax(1)
e
I, (a) -1 -1
0 exp(iafbxdn) exp(—iafbxdn) =0
1 1




~ or, when the determinant is expanded,

20

[v(iea -~ l)2 + pltan(ad) + 20 = 0 (1%)
where
. (xa)
_ L'(l) _ b _ plkan
n= X2(1) > A { xdn v = DeIl(ka)X(l) :

We are primarily interested in values of ka ranging from small to
moderate. It would not be appropriate to attempt to infer much about
the behavior of very short waves (ka >> 1) from our inviscid theory since
viscosity assumes an increasingly important role as ka increases (the
Reynolds number based upon wavelength decreases as k increases, so that
ka large corresponds to low wave Reynolds numbers).

With ka finite, then € is small (since Q >> 1), but ea may be
moderate or even large. In fact

o=

which can assume any value. In particular, if there are any unstable
modes, then for that mode the semicircle theorem (which still applies,
by virtue of the boundary condition (9)) assures us that

1<E=ga<m
(o]

There are clearly an infinite number of real solutions, o,s to the
eigenvalue equation (14) and these represent stable oscillations.

On the other hand, there are complex solutions as well, showing the
motion to be unstable. These modes and their amplification rates are now
uncovered.

Let

and look for solutions with a, Jarge. In terms of w = wy + iw2,

-
Wy T T e 2
o]



Thus the larger is a,, the greater the amplification rate. In thig way

we find the greatest possible amplification rates for given @ (but large).

a, i, if o, >0
As a, > @, tan (cA) v i TE—T-= -

2 ~i, if a, <0

Assuming amplification, a, < 0 (to be checked a postiori for con-

sistency, so that 2

(ea - 1)% + Bea - 1) + B4 2o
eV v v
(15)
ceq - 1 = - é%(l + /& + ezuv + 2iev)
or
- _ i 1 2 1 2.2
gq - 1 = - ev(l + {2(1 + epuv) + 2((l + € uv)
+ u€2v2)l/2}1/2
1/2
2
+ i{%- Bl + e2uv)“ + heev%‘ - %(l + eguv)}l/z)
where the sign has been chosen to ensure that a? = Im(a) is negative,

since we have assumed this to be the case.

Now from its definition v depends on wavenumber, but for all finite
wavenumber, it is finite. (It always exceeds %pi/pe, however, so that

it is large in the containment problem. )

Fixing v, we have the asymptotic value for a2 for £ small

2+...
a, = - —5—

2 2
£V

where the dots represent additional small corrections of order 82.

Furthermore, the real part of o has the approximate value

a, v+

1 1,4 1/2
1 € 2€(v +4)
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Amplification rates

Since

2ka, Qka, s
= —— = —
o 2

o]

the growth rate for an unstable mode is

0 = - kaf o
2 | 2 2
o
and to lowest order this is,
ka. 2 1 W e, Pi kel (ka)
w, = z;ﬂve = Eka(aE) = Ekw;—- WE (16)

e Il(ka)[f(l)f'(l)]

The growth rate for waves of moderate length is thus inverselv pro-
portional to the angular velocity of swirl, and directly proportional to
the density ratio.

Although the effect of rotation is stabilizing, no amount of rotation
can completely stabilize the flow to a disturbance of any wavelength.

Case_ii

Now we allow x(1) = 0, which is a feature of the slender eddy theory.
Thus the solution (13) is not uniformly valid, and in particular it fails
at n = 1, where a boundary condition must be avplied. We render the solu-
tion uniformly valid by the standard WBKJ treatment.

First, however, we apply the boundary condition at n = b to (13)
which is wvalid there. This yields

l/Q{eXp (iaf"xan) - e?1%exp (-1afxan)} . (17)

1 1

G = Kx
Near n = 1,

X2(n) N h2(n -1) + ...



where h is constant = f£'(1). The turning point occurs at some point n > 1
where

2 k2a2
o nx =Ty
or approximately at
22
nc =1+ . Z 2
bn“o

as o > oo,

If we now introduce the stretched coordinate

£ = (ha)?3(n - 1)

equation (12) becomes

2

g—g-+ £G = 0 (18)
dag

1§

if error terms of relative error 0 (a—g) are ignored. Thus the turning
point n, lies within the £ "boundary layer", and is indistinguishable
from £ = 0. The solution of this equation links the point n = 1 with the
solution (17), when properly matched. The matching involves £ + « in
this "inner" region, and n + 1 in the "outer" region.

The general solution of (18) is

_ .1/2 2,.3/2 (3¢ 3/2
G =g [CJ1/3(3E ) + DJ 1/3 3 )1 .
Boundary conditions at £ = 0 (n = 1) are
= aAIl(ka)
G |1 _ (na)2/3 40
i ( ) aAl, (ka) = (ha) aE
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where

S kan(ka)
v 5;_ IIZka) i
and since
5 (@32 g1/? 5 (232 31/3
1/3'3 /3.4y 2 -1/3°3 1/2,,2
3 1‘(3) g I‘('3')
as £ > 0,
31/3
=D - aAI_(ka) = 0
r(&) .
3
and
(ha)?/3 1 - Wee,\®
=t 0 - = v (—=) aAI_(ka) = 0 .
3
Upon eliminating A,
2/3 a .2 1/3
v Rl B (19)
3 F(g) T(g)

As § > © and n > 1, the inner and outer solutions for G must match.
As n~> 1,

afnxdn'\; %€3/2 .

1

(8 (12 -
0

Thus, as n »+ 1, the outer solution tends to

1 o 1/6 2 .
K ;E7E(;§Q {exp (g it

3/2 3/2)} .

) - exp (2iah) exp G—%—ig
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As § » =, the inner solution is asymptotic to

f}h /3 {C cos (2 3/2 ) + D cos (2 3/2 f%ﬁ} )

Comparing the two, it is seen that a match requires

1./6
C = %-1K fn(a / e?®cos (an - i%)
h
(20)
_ L o L/ iaA 5m
D= - 3 iK /n(hg) e cos (aA - 12) .
Combining (19) and (20), we arrive at the eigenvalue equation
n ?/3
cos(an - ) ( )
= ()3 4 L5 (en - 22 . o . (21)
cos(ap - IE) F(g)

As in case (i), there are clearly an infinite number of real solu-
tions to this equation, but we look for complex roots, with a = aq +
ioy, and a, large and negative. In that event

cos(ap - 5 o 2 3
St sui .
COS((IA - 1‘2‘ - 1—2-'-‘
if exponentially small errors are ignored. Making this substitution in

(21) and rearranging, the equation assumes the following form,

(e - 1)0 = (ha)?

where
b3
2 g(g)?’ r3
2
P(3)
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Putting ea = x and taking the square root of both sides,

Alx - l)3 + %—x =0 .

As € » 0, with h and X fixed, the six solutions of this equation are
asymptotically '

‘1/2
= b
X =% (F)
] 1/2
x3,h = * 1(;{)
_ 4 e

Since the equation was derived to hold for Im(%) large and negative, the
only significant root of this equation is

h 1/2

X, = - i(E;- s

corresponding to the amplification rate

L
r(%d 3/

r®

W 1/2

1/2
= an'(l)) .

(Wk ) /3 (

o<t

e
w2 = Wk( "

Again rotation appears as a stabilizing influence, but is unable to
completely suppress the Kelvin-Helmholtz instability. As might be ex-
pected, when the angular velocity starts from zero at the interface, the
stabilizing effect of rotation is weaker than in case (i).

DISCUSSION

In light of Part I, some instabilities uncovered in Part II are
anomalous. All shear layers have a real structure, and replacing a thin
structure by a discontinuity is done only to achieve mathematical simpli-
fications. However, in this case it may lead to erroneous results if a
thin but stable structure (by Part I) is replaced by a vortex sheet,
since Part II sees the discontinuity sheet as unstable.
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This is truly a peculiar situation, and demands that the results
of Part II be used with an appropriate understanding of their limitations.

All flows with jumps in axial velocity appear unstable in Part II,
although, at least, those with stable structure are probably stable.
However, the results of Part II have the following utility: if a flow
(with a thin layer connecting regions where the motion fits the model of
Part II) is unstable, then the amplification rates found in Part II apply.

It should be emphasized that the instabilities found in this paper
are local, and do not discredit the existence of slender eddies as a
global phenomenon. Such eddies have axially varying shapes and flow
quantities which must crucially affect their overall stability. In fact,
it is known experimentally that these flows have a stable existence.
Instead, an instability uncovered here should be regarded as an indication
of the extent of mixing which can be expected between the eddy interior
and the outer stream.

The results of Part II (which may also apply to the coaxial jet
reactor) suggest that the instability, and hence the vigor of mixing is
controllable by rotation of the outer flow. Without rotation, the Kelvin-
Helmholtz instability is much stronger, with a growth rate proportional
to kW.
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APPENDIX A

LIST OF SYMBOLS FOR PART II

t

AB a=(B)"Y2 g o " %(ff')l/edn
1

Functions used in WBKJ asymptotic expansion

C,D,X Constants used in WBKJ expansion

F Perturbation stream function
G G =rF
e
Io,l Modified Bessel Functions
Q Q= B KR T (1a)T (xa)
p 2 o 1
e
a (b ¢ 2 R . .
R R = jrf ;4gl dn (Also used as [dimensional] radius of tube wall.)
2 2
b 2 a 'k 2
: s = [°[ln1? + ZE-1e]”] an
T
1
v Azimuthal velocity
W Axial wvelocity
a Radius of vortex sheet
22,2 .
b R™/a”, where R = tube radius
c Complex wave speed ¢ = cr + ici
e Subscript referring to region external to vortex sheet

£(n) ¥V = a®af(n)

g(n) g = G/aA

as
h h = dn(1)
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<l

Subscript referring to region inside vortex sheet (also v -1 )
Wavenumber

Radial, azimuthal and axial velocity pérturbations

t

X = ea
1l Wk Q
= — — = - = +
a t o ak ® al 1a2
' = rV is the circulation (also the gamma function)

Displacement of discontinuity interface from r = a, i.e. equation
for interface is r = a + 6(z,t)

s = [Pxan
1
g = W Rossb umber
= om0 sby n e
z = |5
2
=r_
n=
a
b
> 9,3 |13
AT = g(v)
1‘(g
3
_x'(1)
WETS
x~(1)

Vv = i 0

o T (ka)x(1)

o, Iy ka)x(1)
v=x(1) v
. _ 2/3

Stretched coordinate, £ = (ha) (n -1)
Density

-1 4 2
¢ = r3 dr(por )



x(n) x = %—(ff' )1/2

w Wave frequency

NASA-Langley, 1969 — 12 £ -4964
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